Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
J Int Neuropsychol Soc ; 30(1): 84-93, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37553288

RESUMO

OBJECTIVE: Methamphetamine and cannabis are two widely used, and frequently co-used, substances with possibly opposing effects on the central nervous system. Evidence of neurocognitive deficits related to use is robust for methamphetamine and mixed for cannabis. Findings regarding their combined use are inconclusive. We aimed to compare neurocognitive performance in people with lifetime cannabis or methamphetamine use disorder diagnoses, or both, relative to people without substance use disorders. METHOD: 423 (71.9% male, aged 44.6 ± 14.2 years) participants, stratified by presence or absence of lifetime methamphetamine (M-/M+) and/or cannabis (C-/C+) DSM-IV abuse/dependence, completed a comprehensive neuropsychological, substance use, and psychiatric assessment. Neurocognitive domain T-scores and impairment rates were examined using multiple linear and binomial regression, respectively, controlling for covariates that may impact cognition. RESULTS: Globally, M+C+ performed worse than M-C- but better than M+C-. M+C+ outperformed M+C- on measures of verbal fluency, information processing speed, learning, memory, and working memory. M-C+ did not display lower performance than M-C- globally or on any domain measures, and M-C+ even performed better than M-C- on measures of learning, memory, and working memory. CONCLUSIONS: Our findings are consistent with prior work showing that methamphetamine use confers risk for worse neurocognitive outcomes, and that cannabis use does not appear to exacerbate and may even reduce this risk. People with a history of cannabis use disorders performed similarly to our nonsubstance using comparison group and outperformed them in some domains. These findings warrant further investigation as to whether cannabis use may ameliorate methamphetamine neurotoxicity.


Assuntos
Transtornos Relacionados ao Uso de Anfetaminas , Cannabis , Transtornos Cognitivos , Metanfetamina , Humanos , Masculino , Feminino , Metanfetamina/efeitos adversos , Cannabis/efeitos adversos , Transtornos Cognitivos/etiologia , Transtornos Relacionados ao Uso de Anfetaminas/complicações , Testes Neuropsicológicos
3.
Viruses ; 15(3)2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36992383

RESUMO

OBJECTIVE: Methamphetamine and cannabis are two widely used substances among people living with HIV (PLWH). Whereas methamphetamine use has been found to worsen HIV-associated neurocognitive impairment, the effects of combined cannabis and methamphetamine use disorder on neurocognition in PLWH are not understood. In the present study, we aimed to determine the influence of these substance use disorders on neurocognition in PLWH and to explore if methamphetamine-cannabis effects interacted with HIV status. METHOD AND PARTICIPANTS: After completing a comprehensive neurobehavioral assessment, PLWH (n = 472) were stratified by lifetime methamphetamine (M-/M+) and cannabis (C-/C+) DSM-IV abuse/dependence disorder into four groups: M-C- (n = 187), M-C+ (n = 68), M+C-, (n = 82), and M+C+ (n = 135). Group differences in global and domain neurocognitive performances and impairment were examined using multiple linear and logistic regression, respectively, while holding constant other covariates that were associated with study groups and/or cognition. Data from participants without HIV (n = 423) were added, and mixed-effect models were used to examine possible interactions between HIV and substance use disorders on neurocognition. RESULTS: Compared with M+C+, M+C- performed worse on measures of executive functions, learning, memory, and working memory and were more likely to be classified as impaired in those domains. M-C- performed better than M+C+ on measures of learning and memory but worse than M-C+ on measures of executive functions, learning, memory, and working memory. Detectable plasma HIV RNA and nadir CD4 < 200 were associated with lower overall neurocognitive performance, and these effects were greater for M+C+ compared with M-C-. CONCLUSIONS: In PLWH, lifetime methamphetamine use disorder and both current and legacy markers of HIV disease severity are associated with worse neurocognitive outcomes. There was no evidence of an HIV × M+ interaction across groups, but neurocognition was most impacted by HIV among those with polysubstance use disorder (M+C+). Better performance by C+ groups is consistent with findings from preclinical studies that cannabis use may protect against methamphetamine's deleterious effects.


Assuntos
Cannabis , Infecções por HIV , Metanfetamina , Transtornos Relacionados ao Uso de Substâncias , Humanos , Metanfetamina/efeitos adversos , Cannabis/efeitos adversos , Transtornos Relacionados ao Uso de Substâncias/complicações , Cognição , Infecções por HIV/complicações , Infecções por HIV/psicologia
4.
Curr HIV Res ; 17(2): 126-133, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31269883

RESUMO

BACKGROUND: Methamphetamine abuse and human immunodeficiency virus (HIV) are common comorbidities. HIV-associated proteins, such as the regulatory protein TAT, may contribute to brain reward dysfunction, inducing an altered sensitivity to methamphetamine reward and/or withdrawal in this population. OBJECTIVE: These studies examined the combined effects of TAT protein expression and, chronic and binge methamphetamine regimens on brain reward function. METHODS: Transgenic mice with inducible brain expression of the TAT protein were exposed to either saline, a chronic, or a binge methamphetamine regimen. TAT expression was induced via doxycycline treatment during the last week of methamphetamine exposure. Brain reward function was assessed daily throughout the regimens, using the intracranial self-stimulation procedure, and after a subsequent acute methamphetamine challenge. RESULTS: Both methamphetamine regimens induced withdrawal-related decreases in reward function. TAT expression substantially, but not significantly increased the withdrawal associated with exposure to the binge regimen compared to the chronic regimen, but did not alter the response to acute methamphetamine challenge. TAT expression also led to persistent changes in adenosine 2B receptor expression in the caudate putamen, regardless of methamphetamine exposure. These results suggest that TAT expression may differentially affect brain reward function, dependent on the pattern of methamphetamine exposure. CONCLUSION: The subtle effects observed in these studies highlight that longer-term TAT expression, or its induction at earlier stages of methamphetamine exposure, may be more consequential at inducing behavioral and neurochemical effects.


Assuntos
Encéfalo/efeitos dos fármacos , Metanfetamina/farmacologia , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Animais , Encéfalo/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Receptores Purinérgicos P1/genética , Recompensa , Regulação para Cima/efeitos dos fármacos , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo
5.
BMC Res Notes ; 11(1): 275, 2018 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-29728138

RESUMO

OBJECTIVE: In HIV+ individuals, the virus enters the central nervous system and invades innate immune cells, producing important changes that result in neurological deficits. We aimed to determine whether HIV plays a direct role in neuronal excitability. Of the HIV peptides, Tat is secreted and acts in other cells. In order to examine whether the HIV Tat can modify neuronal excitability, we exposed primary murine hippocampal neurons to that peptide, and tested its effects on the intrinsic membrane properties, 4 and 24 h after exposure. RESULTS: The exposure of hippocampal pyramidal neurons to Tat for 4 h did not alter intrinsic membrane properties. However, we found a strong increase in intrinsic excitability, characterized by increase of the slope (Gain) of the input-output function, in cells treated with Tat for 24 h. Nevertheless, Tat treatment for 24 h did not alter the resting membrane potential, input resistance, rheobase and action potential threshold. Thus, neuronal adaptability to Tat exposure for 24 h is not applicable to basic neuronal properties. A restricted but significant effect on coupling the inputs to the outputs may have implications to our knowledge of Tat biophysical firing capability, and its involvement in neuronal hyperexcitability in neuroHIV.


Assuntos
HIV-1/metabolismo , Hipocampo , Potenciais da Membrana , Células Piramidais , Transmissão Sináptica , Produtos do Gene tat do Vírus da Imunodeficiência Humana/farmacologia , Animais , Hipocampo/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Células Piramidais/efeitos dos fármacos , Proteínas Recombinantes , Transmissão Sináptica/efeitos dos fármacos
6.
Mediators Inflamm ; 2017: 7582437, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28811681

RESUMO

Osteopontin (OPN) is a molecule that is common in central nervous system (CNS) pathologies, which participates in the activation, migration, and survival of inflammatory cells. However, the mechanisms by which OPN modulates inflammatory pathways are not clear. To understand the role of OPN in CNS viral infections, we used a lethal mouse model of West Nile virus (WNV), characterized by the injection of high doses of the Eg101 strain of WNV, causing the increase of OPN levels in the brain since early time points. To measure the impact of OPN in neuropathogenesis and resistance, we compared C57BI/6 WT with mice lacking the OPN gene (OPN KO). OPN KO presented a significantly higher mortality compared to WT mice, detectable since day 5 pi. Our data suggests that OPN expression at early time points may provide protection against viral spread in the CNS by negatively controlling the type I IFN-sensitive, caspase 1-dependent inflammasome, while promoting an alternative caspase 8-associated pathway, to control the apoptosis of infected cells during WNV infection in the CNS. Overall, we conclude that the expression of OPN maintains a critical threshold in the innate immune response that controls apoptosis and lethal viral spread in early CNS infection.


Assuntos
Sistema Nervoso Central/metabolismo , Inflamassomos/metabolismo , Osteopontina/metabolismo , Febre do Nilo Ocidental/metabolismo , Febre do Nilo Ocidental/patologia , Animais , Encéfalo/imunologia , Encéfalo/metabolismo , Morte Celular/imunologia , Sistema Nervoso Central/imunologia , Inflamassomos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteopontina/genética , Febre do Nilo Ocidental/imunologia
7.
Brain Behav Immun ; 65: 210-221, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28495611

RESUMO

Methamphetamine abuse is common among humans with immunodeficiency virus (HIV). The HIV-1 regulatory protein TAT induces dysfunction of mesolimbic dopaminergic systems which may result in impaired reward processes and contribute to methamphetamine abuse. These studies investigated the impact of TAT expression on methamphetamine-induced locomotor sensitization, underlying changes in dopamine function and adenosine receptors in mesolimbic brain areas and neuroinflammation (microgliosis). Transgenic mice with doxycycline-induced TAT protein expression in the brain were tested for locomotor activity in response to repeated methamphetamine injections and methamphetamine challenge after a 7-day abstinence period. Dopamine function in the nucleus accumbens (Acb) was determined using high performance liquid chromatography. Expression of dopamine and/or adenosine A receptors (ADORA) in the Acb and caudate putamen (CPu) was assessed using RT-PCR and immunohistochemistry analyses. Microarrays with pathway analyses assessed dopamine and adenosine signaling in the CPu. Activity-dependent neurotransmitter switching of a reserve pool of non-dopaminergic neurons to a dopaminergic phenotype in the ventral tegmental area (VTA) was determined by immunohistochemistry and quantified with stereology. TAT expression enhanced methamphetamine-induced sensitization. TAT expression alone decreased striatal dopamine (D1, D2, D4, D5) and ADORA1A receptor expression, while increasing ADORA2A receptors expression. Moreover, TAT expression combined with methamphetamine exposure was associated with increased adenosine A receptors (ADORA1A) expression and increased recruitment of dopamine neurons in the VTA. TAT expression and methamphetamine exposure induced microglia activation with the largest effect after combined exposure. Our findings suggest that dopamine-adenosine receptor interactions and reserve pool neuronal recruitment may represent potential targets to develop new treatments for methamphetamine abuse in individuals with HIV.


Assuntos
Metanfetamina/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/fisiologia , Animais , Dopamina/metabolismo , Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/metabolismo , Produtos do Gene tat , HIV-1 , Humanos , Locomoção/efeitos dos fármacos , Masculino , Metanfetamina/efeitos adversos , Metanfetamina/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Recompensa , Área Tegmentar Ventral/efeitos dos fármacos
8.
J Neuroinflammation ; 14(1): 49, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-28279172

RESUMO

BACKGROUND: Astrocyte activation is one of the earliest findings in the brain of methamphetamine (Meth) abusers. Our goal in this study was to identify the characteristics of the astrocytic acute response to the drug, which may be critical in pathogenic outcomes secondary to the use. METHODS: We developed an integrated analysis of gene expression data to study the acute gene changes caused by the direct exposure to Meth treatment of astrocytes in vitro, and to better understand how astrocytes respond, what are the early molecular markers associated with this response. We examined the literature in search of similar changes in gene signatures that are found in central nervous system disorders. RESULTS: We identified overexpressed gene networks represented by genes of an inflammatory and immune nature and that are implicated in neuroactive ligand-receptor interactions. The overexpressed networks are linked to molecules that were highly upregulated in astrocytes by all doses of methamphetamine tested and that could play a role in the central nervous system. The strongest overexpressed signatures were the upregulation of MAP2K5, GPR65, and CXCL5, and the gene networks individually associated with these molecules. Pathway analysis revealed that these networks are involved both in neuroprotection and in neuropathology. We have validated several targets associated to these genes. CONCLUSIONS: Gene signatures for the astrocytic response to Meth were identified among the upregulated gene pool, using an in vitro system. The identified markers may participate in dysfunctions of the central nervous system but could also provide acute protection to the drug exposure. Further in vivo studies are necessary to establish the role of these gene networks in drug abuse pathogenesis.


Assuntos
Astrócitos/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Metanfetamina/farmacologia , Animais , Astrócitos/fisiologia , Células Cultivadas , Expressão Gênica/fisiologia , Redes Reguladoras de Genes/fisiologia , Ratos , Ratos Sprague-Dawley
9.
J Infect Dis ; 211(1): 40-4, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25035516

RESUMO

Human immunodeficiency virus (HIV) accesses the brain early in infection and can lead to neurocognitive disorders. The brain can also serve as a viral reservoir, but how virus is controlled in the brain is unknown. To examine this, CD8-depleting monoclonal antibody was injected into the cerebrospinal fluid of rhesus monkeys with chronic simian immunodeficiency virus (SIV) infection. This treatment led to the rapid increase of SIV in the brain. Virus in the brain is maintained by active suppression from the host immune system. This dynamic interaction can be manipulated in efforts to control and eradicate virus from the brain and other reservoirs.


Assuntos
Encéfalo/imunologia , Encéfalo/virologia , Linfócitos T CD8-Positivos/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/imunologia , Animais , Anticorpos Monoclonais/imunologia , Macaca mulatta/imunologia , Macaca mulatta/virologia , Síndrome de Imunodeficiência Adquirida dos Símios/líquido cefalorraquidiano
10.
J Biol Chem ; 289(51): 35149-58, 2014 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-25368325

RESUMO

Sialic acid terminates glycans of glycoproteins and glycolipids that play numerous biological roles in health and disease. Although genetic tools are available for interrogating the effects of decreased or abolished sialoside expression in mice, pharmacological inhibition of the sialyltransferase family has, to date, not been possible. We have recently shown that a sialic acid analog, 2,4,7,8,9-pentaacetyl-3Fax-Neu5Ac-CO2Me (3F-NeuAc), added to the media of cultured cells shuts down sialylation by a mechanism involving its intracellular conversion to CMP-3F-NeuAc, a competitive inhibitor of all sialyltransferases. Here we show that administering 3F-NeuAc to mice dramatically decreases sialylated glycans in cells of all tissues tested, including blood, spleen, liver, brain, lung, heart, kidney, and testes. A single dose results in greatly decreased sialoside expression for over 7 weeks in some tissues. Although blockade of sialylation with 3F-NeuAc does not affect viability of cultured cells, its use in vivo has a deleterious "on target" effect on liver and kidney function. After administration of 3F-NeuAc, liver enzymes in the blood are dramatically altered, and mice develop proteinuria concomitant with dramatic loss of sialic acid in the glomeruli within 4 days, leading to irreversible kidney dysfunction and failure to thrive. These results confirm a critical role for sialosides in liver and kidney function and document the feasibility of pharmacological inhibition of sialyltransferases for in vivo modulation of sialoside expression.


Assuntos
Inibidores Enzimáticos/farmacologia , Ácido N-Acetilneuramínico/metabolismo , Sialiltransferases/antagonistas & inibidores , Sialiltransferases/metabolismo , Animais , Western Blotting , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Relação Dose-Resposta a Droga , Citometria de Fluxo , Glicolipídeos/metabolismo , Glicoproteínas/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Leucócitos/efeitos dos fármacos , Leucócitos/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Masculino , Espectrometria de Massas , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , Polissacarídeos/metabolismo , Ácidos Siálicos/farmacologia , Baço/efeitos dos fármacos , Baço/metabolismo , Fatores de Tempo
11.
Temperature (Austin) ; 1(3): 227-241, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-26346736

RESUMO

Hyperthermia is a potentially lethal side effect of Methamphetamine (Meth) abuse, which involves the participation of peripheral thermogenic sites such as the Brown Adipose Tissue (BAT). In a previous study we found that the anti-oxidant N-acetyl cysteine (NAC) can prevent the high increase in temperature in a mouse model of Meth-hyperthermia. Here, we have further explored the ability of NAC to modulate Meth-induced hyperthermia in correlation with changes in BAT. We found that NAC treatment in controls causes hypothermia, and, when administered prior or upon the onset of Meth-induced hyperthermia, can ameliorate the temperature increase and preserve mitochondrial numbers and integrity, without affecting locomotor activity. This was different from Dantrolene, which decreased motor activity without affecting temperature. The effects of NAC were seen in spite of its inability to recover the decrease of mitochondrial superoxide induced in BAT by Meth. In addition, NAC did not prevent the Meth-induced decrease of BAT glutathione. Treatment with S-adenosyl-L-methionine, which improves glutathione activity, had an effect in ameliorating Meth-induced hyperthermia, but also modulated motor activity. This suggests a role for the remaining glutathione for controlling temperature. However, the mechanism by which NAC operates is independent of glutathione levels in BAT and specific to temperature. Our results show that, in spite of the absence of a clear mechanism of action, NAC is a pharmacological tool to examine the dissociation between Meth-induced hyperthermia and motor activity, and a drug of potential utility in treating the hyperthermia associated with Meth-abuse.

12.
FASEB J ; 27(9): 3720-9, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23752207

RESUMO

MicroRNA (miR)-142 is up-regulated in the brain in HIV and SIV encephalitis (SIVE). We identified the cell types where miR-142 is up-regulated and its relevant downstream target. Fluorescent in situ hybridization combined with immunofluorescent labeling revealed that miR-142-3p and -5p are expressed within hippocampal neurons and myeloid cells in SIVE. Sirtuin1 (SIRT1) was predicted as a potential miR-142 target by analysis of its 3'-UTR and bioinformatic analysis of factors linked to altered hippocampal gene expression profile in SIVE. Overexpression of pre-miR-142 in HEK293T cells led to a 3.7-fold decrease in SIRT1 protein level. Examination of the individual effects of miR-142-5p and miR-142-3p through overexpression and inhibition studies revealed that significant effects on SIRT1 occurred only with miR-142-5p. Luciferase reporter assays revealed a 2.3-fold inhibition of expression due to interaction of miR-142 with the SIRT1 3'-UTR, mutation analysis revealed that only the miR-142-5p target site was active. MiR-142 expression in primary human neurons led to a small (1.3-fold) but significant decrease in SIRT1 protein level. Furthermore, qRT-PCR revealed up-regulation of miR-142-3p (6.4-fold) and -5p (3.9-fold) and down-regulation of SIRT1 (33-fold) in macrophages/microglia from animals with SIVE. We have therefore elucidated a miR-mediated mechanism of regulation of SIRT1 expression in SIVE.


Assuntos
Encefalite/genética , Encefalite/virologia , MicroRNAs/genética , Vírus da Imunodeficiência Símia/patogenicidade , Sirtuína 1/metabolismo , Animais , Western Blotting , Linhagem Celular , Células Cultivadas , Humanos , Sirtuína 1/genética , Regulação para Cima
13.
Science ; 334(6057): 809-13, 2011 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-22021672

RESUMO

Phospholipase A(2)(PLA(2)) enzymes are considered the primary source of arachidonic acid for cyclooxygenase (COX)-mediated biosynthesis of prostaglandins. Here, we show that a distinct pathway exists in brain, where monoacylglycerol lipase (MAGL) hydrolyzes the endocannabinoid 2-arachidonoylglycerol to generate a major arachidonate precursor pool for neuroinflammatory prostaglandins. MAGL-disrupted animals show neuroprotection in a parkinsonian mouse model. These animals are spared the hemorrhaging caused by COX inhibitors in the gut, where prostaglandins are instead regulated by cytosolic PLA(2). These findings identify MAGL as a distinct metabolic node that couples endocannabinoid to prostaglandin signaling networks in the nervous system and suggest that inhibition of this enzyme may be a new and potentially safer way to suppress the proinflammatory cascades that underlie neurodegenerative disorders.


Assuntos
Ácidos Araquidônicos/metabolismo , Encéfalo/metabolismo , Moduladores de Receptores de Canabinoides/metabolismo , Endocanabinoides , Glicerídeos/metabolismo , Inflamação/metabolismo , Monoacilglicerol Lipases/metabolismo , Prostaglandinas/metabolismo , Animais , Ácido Araquidônico/metabolismo , Benzodioxóis/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Ciclo-Oxigenase 1/metabolismo , Citocinas/metabolismo , Eicosanoides/metabolismo , Inibidores Enzimáticos/farmacologia , Hidrólise , Inflamação/patologia , Mediadores da Inflamação/farmacologia , Lipopolissacarídeos/farmacologia , Fígado/metabolismo , Pulmão/metabolismo , Metabolômica , Camundongos , Camundongos Endogâmicos C57BL , Monoacilglicerol Lipases/antagonistas & inibidores , Monoacilglicerol Lipases/genética , Fármacos Neuroprotetores/farmacologia , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/patologia , Fosfolipases A2/genética , Fosfolipases A2/metabolismo , Piperidinas/farmacologia , Prostaglandinas/biossíntese , Transdução de Sinais
14.
AIDS ; 23(10): 1187-95, 2009 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-19455015

RESUMO

OBJECTIVE: Neurocognitive disorders are devastating consequences of HIV infection. Although antiretroviral regimens have been efficacious in both improving life expectancy and decreasing dementia, there has not been an effect on the overall prevalence of HIV-associated neurocognitive disorders. Whether early institution of treatment, or treatment with drugs that effectively penetrate the blood-brain barrier, would help protect from such conditions is not known. Using the simian immunodeficiency virus/macaque model, we investigated the hypothesis that early introduction of antiretroviral treatment can protect the brain. DESIGN AND METHODS: Animals were inoculated with simian immunodeficiency virus, and upon resolution of the acute infection period divided into two groups and treated, or not, with combination antiretroviral therapy. Viral, immune, and physiological parameters were measured during the course of infection, followed by assessment of viral, immune, and molecular parameters in the brain. RESULTS: We observed that even with agents that show poor penetration into the central nervous system, early antiretroviral treatment prevented characteristic neurophysiological and locomotor alterations arising after infection and resulted in a significant decrease in brain viral load. Although the number of infiltrating immune cells in the brain did not change with treatment, their phenotype did, favoring an enrichment of effector T cells. Early treatment also significantly lowered brain levels of interferon-alpha, a cytokine that can lead to neurocognitive and behavioral alterations. CONCLUSION: Early antiretroviral treatment prevents central nervous system dysfunction by decreasing brain viral load and interferon-alpha levels, which can have a profound impact over the course of infection.


Assuntos
Complexo AIDS Demência/prevenção & controle , Fármacos Anti-HIV/administração & dosagem , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Complexo AIDS Demência/imunologia , Complexo AIDS Demência/virologia , Animais , Encéfalo/imunologia , Encéfalo/virologia , Esquema de Medicação , Avaliação Pré-Clínica de Medicamentos/métodos , Potenciais Evocados Auditivos do Tronco Encefálico/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Memória Imunológica/efeitos dos fármacos , Imunofenotipagem , Ativação Linfocitária/efeitos dos fármacos , Macaca mulatta , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/isolamento & purificação , Subpopulações de Linfócitos T/efeitos dos fármacos , Telemetria/métodos , Carga Viral
15.
J Immunol ; 181(7): 4648-55, 2008 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-18802067

RESUMO

Strong evidence supports that CNS-specific CD4(+) T cells are central to the pathogenesis of multiple sclerosis and experimental autoimmune encephalomyelitis (EAE). Using a model of spontaneous EAE, we demonstrated that myelin basic protein (MBP)-specific CD4(+) T cells up-regulate activation markers in the CNS-draining cervical lymph nodes at a time when there is no T cell activation anywhere else, including the CNS, and before the appearance of clinical signs. In spontaneous EAE, the number of MBP-specific T cell numbers does not build up gradually in the CNS; instead, a swift migration of IFN-gamma-producing T cells into the CNS takes place approximately 24 h before the onset of neurological signs of EAE. Surgical excision of the cervical lymph nodes in healthy pre-EAE transgenic mice delayed the onset of EAE and resulted in a less severe disease. In EAE induced by immunization with MBP/CFA, a similar activation of T cells in the draining lymph nodes of the injection site precedes the disease. Taken together, our results suggest that peripheral activation of T cells in draining lymph nodes is an early event in the development of EAE, which paves the way for the initial burst of IFN-gamma-producing CD4(+) T cell into the CNS.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/patologia , Movimento Celular/imunologia , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/patologia , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Proteína Básica da Mielina/imunologia , Animais , Biomarcadores/líquido cefalorraquidiano , Linfócitos T CD4-Positivos/metabolismo , Movimento Celular/genética , Células Cultivadas , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/cirurgia , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/imunologia , Excisão de Linfonodo , Linfonodos/imunologia , Linfonodos/metabolismo , Linfonodos/patologia , Linfonodos/cirurgia , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Fatores de Tempo , Regulação para Cima/genética , Regulação para Cima/imunologia
16.
Cell Immunol ; 254(1): 56-62, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18678363

RESUMO

In order to assess the role of osteopontin (OPN) in leukocyte accumulation in inflammatory conditions, native OPN and its thrombin cleaved form (OPN+Thr) were studied in vivo using a rodent subcutaneous air pouch model (AP). Both forms of OPN-induced macrophage infiltration into the AP in wild-type mice. In animals lacking CD44, macrophage numbers were significantly reduced within the cavity, but cells still accumulated along the subcutaneous lining. In animals lacking endogenous OPN, no differences were found in exogenous OPN-induced macrophage accumulation, although macrophage exhibited increased alpha4 integrin expression. These studies reveal that both OPN and OPN+Thr attract macrophages in vivo through CD44.


Assuntos
Quimiotaxia de Leucócito/imunologia , Receptores de Hialuronatos/biossíntese , Macrófagos/imunologia , Osteopontina/imunologia , Animais , Western Blotting , Adesão Celular/imunologia , Citometria de Fluxo , Imuno-Histoquímica , Macrófagos/metabolismo , Camundongos , Osteopontina/metabolismo
17.
Alcohol Clin Exp Res ; 32(9): 1583-92, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18616669

RESUMO

BACKGROUND: Alcohol consumption is a common problem in HIV-infected individuals, and the effects of alcohol may alter the efficiency of the immune response, potentially aggravating the disease as well as affecting end organs, such as the brain. However, the elements of the virus-host interaction that are modulated by ethanol are poorly dissected. METHODS: Ethanol intake was conditioned in rhesus macaques prior to SIV infection, in order to mimic this common human behavior, and allow the evaluation of aspects of the virus-immune system interactions during acute time-points, when important facets of the infection are set up and when virus reproducibly enters the brain. RESULTS: Although ethanol had a limited effect on the acute plasma viral load, it resulted in reduced circulating memory CD4(+) T cells and increased levels of monocytes expressing the viral coreceptor CCR5. In organs, ethanol consumption impacted immune cells in the liver as well as lymphoid and other nonlymphoid tissues, where CD4(+) T cells were predominantly affected. CONCLUSION: Overall, the consumption of alcohol causes immune cell alterations that can contribute to the generation of a disease susceptible environment upon SIV infection.


Assuntos
Consumo de Bebidas Alcoólicas/imunologia , Alcoolismo/imunologia , Sistema Imunitário/fisiopatologia , Doenças dos Macacos/imunologia , Doenças dos Macacos/virologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/imunologia , Animais , Encéfalo/patologia , Encéfalo/virologia , Citocinas/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças/imunologia , Células Matadoras Naturais/patologia , Fígado/patologia , Fígado/virologia , Macaca mulatta , Doenças dos Macacos/epidemiologia , Fatores de Risco , Síndrome de Imunodeficiência Adquirida dos Símios/epidemiologia , Síndrome de Imunodeficiência Adquirida dos Símios/patologia , Baço/patologia , Baço/virologia , Linfócitos T/patologia , Carga Viral
18.
AIDS ; 22(12): 1441-52, 2008 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-18614867

RESUMO

OBJECTIVES: Defects in memory CD4+ T cells correlate with development of AIDS in monkeys infected with simian immunodeficiency virus, but the early events leading to these deficits are unknown. We explored the role of cells specific to simian immunodeficiency virus and CD8 cells in the determination of CD4 failure and rapid disease course. DESIGN AND METHODS: Using MamuA*01-restricted Gag and Tat epitope tetramers, we compared the kinetics of specific response in animals with regular (REG) and rapid (RAP) progression. Expressions of memory, activation and proliferation markers were examined on the global CD8 pool, as well as on CD4 T cells in those animals. In-vivo CD8 depletion in non-MamuA*01 animals was used to investigate CD8 collapse as an event leading to disease progression and CD4 deficits. RESULTS: In animals with a rapid disease course, an initial development of cytotoxic T lymphocytes specific to simian immunodeficiency virus is followed by collapse accompanied by global changes in CD8 cells and occurs in synchrony with the characteristic CD4 deficiencies. Antibody-mediated depletion of CD8 cells early after infection with simian immunodeficiency virus induces similar changes in the CD4 cells and rapid development of AIDS. CONCLUSION: CD8 collapse at acute time points may result in uncontrolled viral load and development of a defective and insufficient CD4 population. Our results indicate that early breakdown in CD8 cells leads to CD4 deficits and rapid progression to AIDS and suggest that therapeutic approaches should aim at strengthening CD8 T cells early after viral infection.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Animais , Encéfalo/imunologia , Encéfalo/virologia , Contagem de Linfócito CD4 , Proliferação de Células , Progressão da Doença , Imunofenotipagem , Ativação Linfocitária/imunologia , Macaca mulatta , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Linfócitos T Citotóxicos/imunologia , Carga Viral
19.
J Infect Dis ; 197(11): 1567-76, 2008 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-18471064

RESUMO

In people infected with human immunodeficiency virus type 1 (HIV-1), the accumulation of macrophages in the brain correlates with encephalitis and dementia. We hypothesized that a pattern of surface marker expression in blood monocytes may serve as a marker for central nervous system (CNS) disease. Using the simian immunodeficiency virus (SIV)-rhesus monkey model, we analyzed functionally relevant surface markers on monocytes and macrophages from the blood and brain in animals that did or did not develop SIV encephalitis. At necropsy, multiple markers (CD44v6, CCR2, and CCR5 on blood monocytes and brain microglia and/or macrophages, and CX3CR1 on blood monocytes) allowed us to distinguish animals with encephalitis from those without. Furthermore, the level of expression of CD44v6 on the 2 main populations of blood monocytes--those that express either low or high levels of CD16--was significantly increased in animals with encephalitis. A longitudinal analysis of blood monocyte markers revealed that as early as 28 days after inoculation, CD44v6 staining could distinguish the 2 groups. This provides a potential peripheral biomarker to identify individuals who may develop the HIV-induced CNS disease. Furthermore, given its role in cellular adhesion and as an osteopontin receptor, CD44v6 upregulation on monocytes offers functional clues to the pathogenesis of such complications, and provides a target for preventative and therapeutic measures.


Assuntos
Encefalite/virologia , Receptores de Hialuronatos/biossíntese , Monócitos/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/complicações , Vírus da Imunodeficiência Símia/imunologia , Animais , Biomarcadores , Sangue/imunologia , Encéfalo/imunologia , Encéfalo/patologia , Encéfalo/virologia , Encefalite/imunologia , Citometria de Fluxo , Estudos Longitudinais , Macaca mulatta , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia
20.
Proc Natl Acad Sci U S A ; 104(38): 15138-43, 2007 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-17846423

RESUMO

In monkeys infected with simian immunodeficiency virus (SIV), changes in body temperature and locomotor activity occur after the acute retroviral syndrome stage of the disease. However, alterations to the circadian rhythm of these factors in SIV-infected monkeys have not been reported. To determine whether the circadian rhythm of body temperature and locomotor activity are disrupted during SIV infection, we analyzed the temperature and activity patterns of SIV-infected monkeys through different stages of the disease, progressing to SIV encephalitis by using the cosinor model for circadian oscillation. We found that SIV infection resulted in significant impairments of the amplitude and mean of the circadian rhythm of body temperature and activity and in the acrophase of the circadian rhythm for temperature. These alterations were not related to changes observed in the acute febrile response induced after viral inoculation. In animals killed once marked circadian anomalies were evident, microglia infiltration and macrophage accumulation in the hypothalamus were observed. Together, these results clearly demonstrate that SIV infection compromises aspects of circadian regulation in monkeys, with important implications for physiological functions, including cognition, in HIV-infected individuals.


Assuntos
Temperatura Corporal/fisiologia , Ritmo Circadiano , Atividade Motora/fisiologia , Síndrome de Imunodeficiência Adquirida dos Símios/patologia , Síndrome de Imunodeficiência Adquirida dos Símios/fisiopatologia , Animais , Sistema Nervoso Central/patologia , Sistema Nervoso Central/virologia , Macaca mulatta , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...